A Hypergraph-Based Approach to Feature Selection

نویسندگان

  • Zhihong Zhang
  • Edwin R. Hancock
چکیده

In many data analysis tasks, one is often confronted with the problem of selecting features from very high dimensional data. The feature selection problem is essentially a combinatorial optimization problem which is computationally expensive. To overcome this problem it is frequently assumed that either features independently influence the class variable or do so only involving pairwise feature interaction. To overcome this problem, we draw on recent work on hyper-graph clustering to extract maximally coherent feature groups from a set of objects using high-order (rather than pairwise) similarities. We propose a three step algorithm that, namely, i) first constructs a graph in which each node corresponds to each feature, and each edge has a weight corresponding to the interaction information among features connected by that edge, ii) perform hypergraph clustering to select a highly coherent set of features, iii) further selects features based on a new measure called the multidimensional interaction information (MII). The advantage of MII is that it incorporates third or higher order feature interactions. This is realized using hypergraph clustering, which separates features into clusters prior to selection, thereby allowing us to limit the search space for higher order interactions. Experimental results demonstrate the effectiveness of our feature selection method on a number of standard data-sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection

Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...

متن کامل

A Novel Approach to Feature Selection Using PageRank algorithm for Web Page Classification

In this paper, a novel filter-based approach is proposed using the PageRank algorithm to select the optimal subset of features as well as to compute their weights for web page classification. To evaluate the proposed approach multiple experiments are performed using accuracy score as the main criterion on four different datasets, namely WebKB, Reuters-R8, Reuters-R52, and 20NewsGroups. By analy...

متن کامل

Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets

Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...

متن کامل

A New Framework for Distributed Multivariate Feature Selection

Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...

متن کامل

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

Unsupervised Feature Selection Via Hypergraph Embedding

Most existing feature selection methods focus on ranking individual features based on a utility criterion, and select the optimal feature set in a greedy manner. However, the feature combinations found in this way do not give optimal classification performance, since they tend to neglect the correlations among features. In an attempt to overcome this problem, we develop a novel unsupervised fea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011